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Time-dependent swirling flows inside an enclosed cylindrical rotor–stator cavity with
aspect ratio H/R = 4, larger than the ones usually considered in the literature,
are studied. Within a certain range of governing parameters, vortex breakdown
phenomena can arise along the axis. Very recent papers exhibiting some particular
three-dimensional effects have stimulated new interest in this topic. The study is carried
out by a numerical resolution of the three-dimensional Navier–Stokes equations, based
on high-order spectral approximations in order to ensure very high accuracy of the
solutions.

The first transition to an oscillatory regime occurs through an axisymmetric bifur-
cation (a supercritical Hopf bifurcation) at Re = 3500. The oscillatory regime is caused
by an axisymmetric mode of centrifugal instability of the vertical boundary layer and
the vortex breakdown is axisymmetric, being composed of two stationary bubbles.
For Reynolds numbers up to Re = 3500, different three-dimensional solutions are
identified. At Re = 4000, the flow supports the k = 5 mode of centrifugal instability.
By increasing the rotation speed to Re = 4500, the vortex breakdown evolves to
an S-shaped type after a long computational time. The structure is asymmetric and
gyrates around the axis inducing a new time-dependent regime. At Re = 5500, the
structure of the vortex breakdown is more complex: the upper part of the structure
takes a spiral form. The maximum rotation speed is reached at Re = 10 000 and the
flow behaviour is now chaotic. The upper structure of the breakdown can be related
to the spiral-type. Asymmetric flow separation on the container wall in the form of
spiral arms of different angles is also prominent.

1. Introduction
The motion of a viscous fluid contained in a closed cylinder, with a rotating disk

lid, poses an attractive example of confined swirling flow. The many unresolved
features of these kinds of flows in the laminar regime (see the review by Shtern &
Hussain 1999) make their study both valuable and interesting. On other hand, this
class of flow is also attractive as a vehicle for studying the transition to turbulence
in finite-dimensional systems (Sorensen & Christensen 1995). This is particularly so
for numerical studies, because the flow is completely closed and consequently the
boundary conditions are well defined.

The major characteristics of the flow are known to be determined by two dimen-
sionless parameters: the aspect ratio (L = H/R) and the rotational Reynolds number
(Re = ΩR2/ν), where H and R are, respectively, the height and the radius of the cylin-
der, Ω the angular velocity of the top endwall, and ν the kinematic viscosity of the fluid.
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One of the particular interests of this type of flow is that the confined vortex can
undergo breakdown for certain combinations of (L, Re). In such cases, the vortex
breakdown phenomenon occurs as an abrupt change in the structure of the vortex
core (Benjamin 1962) and typically develops downstream into a recirculatory ‘bubble’
or a helical pattern. These phenomena, characterized by a stagnation zone in the flow,
are of both fundamental and industrial interest. The physical interest lies mainly in
the understanding of the origin and the appearance of these stagnation zones as well
as in the examination of physical relations for flows with concentrated vorticity which
are believed to play a crucial role in the onset of turbulence. Beyond the fundamental
interest, there are also several potentially interesting practical applications associated
with vortex breakdown. In particular, vortex breakdown occurs in swirling combustion
chambers, in the channel–cavity configuration inside a turbine air cooling system
(Owen & Pincombe 1979) or above delta and duck wings of fighter aircraft at high
angles of attack (Peckam & Atkinson 1957). In the latter case, vortices separated
from the wings can break down in the pressure field and causes instabilities. It is of
interest to destroy these vortices to improve the handling of the aircraft or to stabilize
the flames (Syred & Beer 1974).

No generally accepted theory exists that can explain the occurrence of vortex
breakdown and the transition between different types of breakdown (see Shtern
& Hussain 1999 for the different theoretical approaches). Some researchers include
the development of a recirculatory zone and flow reversal in the vortex breakdown
definition, making the vortex breakdown into an internal flow separation (Leibovich
1978). However, flow reversal does not necessarily occur in helical and turbulent vortex
breakdown (Sarpkaya 1995). Nevertheless, this definition is currently considered in
most cases in confined cavities, in which the vortex breakdown is often assimilated into
one or more recirculation bubbles following the pioneering experimental investigations
of Escudier (1984).

Escudier (1984) showed that several recirculation bubbles may exist on the main
vortex axis and mapped out the steady and unsteady flow regions in the (Re, L)-plane,
L 6 3.5 (see figure 1, § 4). He observed in the steady regime that the flow remains
axisymmetric to a high degree of accuracy. Even after a considerable penetration
into the unsteady domain of the stability diagram, the departure from axisymmetry
is negligible, at least for aspect ratio L 6 3. These first observations justified most
numerical studies carried out with an axisymmetric model. Lugt & Haussling (1982)
performed the first numerical study of swirling confined flow that reproduced the
occurrence of breakdown. Subsequent investigations have accurately described the
structure of the steady axisymmetric states (Lopez 1990; Lopez & Perry 1991). These
studies were recently completed by the topological approaches of Brons, Voigt &
Sorensen (1999, 2001) in a closed cylinder with co- and counter rotating end-covers
and in the case of a cylinder with a rotating bottom and a free surface, respectively.
Assuming the flow to be axisymmetric, these authors obtained a list of possible
bifurcations of streamline structures from varying the parameters (Re, L). These
bifurcations are shown to be of a purely topological nature and are not related to
changes in stability of the steady flow. For higher Reynolds numbers, Brons et al.
(2001) have also numerically investigated the transition to a time-dependent solution
and shown that the stability limit for steady flow is established as a Hopf bifurcation.
This result using the finite difference code developed by Daube et al. (1985), had
already been obtained in the numerical work of Daube & Sorensen (1989) in which
they indicated that the transition in a cylinder of aspect ratio L = 2 occurs through a
supercritical Hopf bifurcation for Re ' 2400. The linear stability analysis of Gelfgat,
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Bar-Yoseph & Solan (1996) also demonstrated this result for a steady axisymmetric
flow in a cavity of aspect ratio (L = 2.5); a Hopf bifurcation has been found near
Re = 2700, and the most unstable mode has been found to be axisymmetric. Lopez
& Perry (1991) and Sorensen & Christensen (1995) have reported and described
the axisymmetric unsteady regimes: coalescing bubbles vortex breakdown are found
in periodic and quasi-periodic regimes. The more recent combined experimental
and numerical study of Stevens, Lopez & Cantwell (1999) extended the previous
investigations into the unsteady flow regime far from the onset of the unsteadiness,
and they demonstrated the existence of three oscillatory states with hysteretic jumps
in a cavity of L = 2.5.

In spite of the numerous previous studies, controversies remain over the questions
of the symmetry breaking of the flow and of vortex breakdown. Very recent exper-
imental (Spohn, Mory & Hopfinger 1998) and numerical studies (Sotiroupolos &
Ventikos 2001; Marques & Lopez 2001; Blackburn & Lopez 2000; Pereira & Sousa
1999) showed three-dimensional behaviour that arises in the structure of the vortex
breakdown bubble and in the external vortex flow. Indeed, in the experiments of
Spohn et al. (1998) and computations of Sotiroupolos & Ventikos (2001) the steady
bubble is asymmetric and open. Moreover, recent computations of Marques & Lopez
(2001) showed vortex breakdown in precession about the central axis for Re = 2900
(L = 3). Pereira & Sousa (2001) also obtained this precession motion for Re = 3100,
portraying a fully non-symmetric behaviour but in a cavity with rotating cone. On the
other hand, a recent three-dimensional numerical study of Blackburn & Lopez (2000)
for Re = 3500 in a cylinder of aspect ratio L = 2.5, shows a symmetry breaking of the
flow from a time-dependent axisymmetric state, leading immediately to modulated
rotating waves with an azimuthal wavenumber k = 5.

The origin and the mechanism of the symmetry breaking have not yet been
completely elucidated but could be related to the existence of asymmetric flow
separation on the container wall (Spohn et al. 1998). Three-dimensional computations
of Sotiroupolos & Ventikos (2001) seem to confirm these observations and show that
these separation lines are due to the emergence of counter-rotating pairs of spiral
vortices related to centrifugal instability of the boundary layer on the container wall.
Nevertheless, these authors show that in their computations the separation of the
sidewall layer is forced by the distorted structure of their Cartesian numerical grid.
In contrast, Blackburn & Lopez (2000) and Marques & Lopez (2001), attribute this
symmetry breaking to an instability of the swirling jet produced by the turning of the
Ekman layer on the stationary vertical sidewall.

Escudier (1984) observed that the transition to a time-dependent flow for L > 3.1
was coupled with a precessing motion of the lower breakdown. In contrast, a recent
linear stability analysis of Gelfgat, Bar-Yoseph & Solan (2001) shows that the basic
state loses stability via a supercritical Hopf bifurcation to a k = 4 rotating wave and
for a lower Reynolds number than Escudier. The numerical study of Marques &
Lopez (2001) shows that the precession mode observed by Escudier (1984) is related
to an instability (supercritical Naimark–Sacker bifurcation) of the k = 4 rotating
wave state and not an instability of the steady axisymmetric basic state.

In the present investigation we bring some elements to this transition by solving
the three-dimensional Navier–Stokes equations using a pseudo-spectral Chebyshev–
Fourier method associated with a multi-step time scheme (Serre & Pulicani 2001).
The spectral methods are particularly efficient in terms of accuracy with respect to
the number of polynomials. The use of the Chebyshev collocation approximation
is readily adapted to concentrating grid points close to the axis and in the thin
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layers bordering the domain. Moreover, it is important to underline that this accurate
method does not introduce fixed non-axisymmetric modes as in the case of curvilinear
grids employed in finite-volume methods (for example Sotiroupolos & Ventikos 2001).

The transition to time-dependent regimes and three-dimensional behaviour are in-
vestigated in the same geometrical configuration as in the experiments of Escudier
(1984). A cylinder with a larger aspect ratio than usually studied in the literature,
L = 4, was selected, providing the expectation of a less stable flow, the axial con-
finement being reduced. The present study reveals some interesting new details of the
closed swirling flow. The transition to an oscillatory flow is shown to occur through
an axisymmetric bifurcation at Re = 3500. The time-dependent regimes are shown
to be related to the vertical sidewall layer instability. Moreover, for a rotation speed
up to Re = 4500, asymmetric vortex breakdown is found, associated with a precess-
ing motion around the axis and with a shift from a bubble to a spiral type vortex
breakdown.

The presentation is organized as follows. The mathematical model and numerical
solution technique are described in § 2 and § 3. Numerical details and the verification
of the numerical method on various well-documented test cases are presented in § 4.
The numerical results are given in § 5 and are analysed in detail and compared with
other investigations, both experimental and theoretical. Conclusions and discussion
of further investigations are presented in § 6.

2. Mathematical model
The equations governing the flow in this configuration are the three-dimensional

Navier–Stokes equations written in velocity–pressure formulation, together with the
continuity equation and appropriate boundary and initial conditions. It is convenient
to write these using a cylindrical polar coordinate system (r, z, θ), relative to a station-
ary observer with the origin at the centre of the cylinder. The velocity components are
V = (u, v, w) respectively, and p is the pressure. The scales for the dimensionless vari-
ables of space, time and velocity are [H/2, Ω−1, ΩR], respectively. The dimensionless
axial and radial coordinates are z = 2z∗/H , z ∈ [−1, 1] and r̄ = 2r∗/H , r̄ ∈ [0, 2/L],
respectively. The radius r̄ has been normalized on [−1, 1], a requisite for the use of
Chebyshev polynomials: the normalized variable is r with r = (r̄L− 1).

No-slip boundary conditions apply at each impermeable wall. Thus u = w = 0
on all rigid walls. For the azimuthal velocity, the boundary conditions are v = 0 on
the stator (z = z̄ = −1) and v = 0.5 × (1 + r) on the rotating disk (z = z̄ = 1).
The junction of the stationary cylinder with the rotor involves a singularity of the
azimuthal velocity, as previously noted by Serre, Crespo del Arco & Bontoux (2001a).
This singular condition expresses a physical situation where there is a thin gap between
the edge of the rotating disk and the stationary sidewall. Unless this singularity is
treated appropriately, spectral methods may have severe difficulties dealing with it. In
order to regularize this condition, the boundary layer function, vµ = exp(−(z− 1))/µ)
has been employed, where µ is an arbitrary shape parameter. It was shown for
equivalent Reynolds numbers in Serre & Pulicani (2001) that this function with
µ = 0.006 provides a reasonable representation of experimental conditions, while
retaining spectral accuracy.

The initial condition corresponds to no motion in the meridian plane and to a
linear shear profile for the azimuthal velocity:

u = w = 0, v = 0.25× (1 + r)(1 + z) for − 1 6 r, z 6 1.
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3. Numerical method
The numerical solution is based on a pseudo-spectral collocation-Chebyshev in both

radial and axial directions (r, z), and considering the 2π-periodicity of the solution
in this configuration a Fourier–Galerkin method is used in the azimuthal direction
(see Canuto et al. 1988). The choice takes into account the orthogonality properties
of Chebyshev polynomials and, in particular, provides exponential convergence –
referred to as spectral accuracy (Gottlieb & Orszag 1977). The high-order accuracy of
these methods ensures an accurate description of the secondary flows of weak intensity
compared to the external basic flow (as in the vortex breakdown recirculation zone).
Moreover, the use of the Gauss–Lobatto collocation corresponding to the extrema of
the Chebyshev polynomials of high degree, N and M in the radial and axial directions
respectively, directly ensures high accuracy of the solution inside the very thin wall
layers and in the neighbourhood of this axis.

The differential equations are exactly satisfied at the Gauss–Lobatto collocation
points, (ri, zj) ∈ [−1, 1]× [−1, 1]:

ri = cos(iπ/N), zj = cos(jπ/M) (i = 0, . . . , N j = 0, . . . ,M).

The approximation of flow variables Ψ = (u, v, w, p) and their derivatives is derived
from the following truncated series:

ΨNMK(r, z, θ, t) =

K/2−1∑
p=K/2

N∑
n=0

M∑
m=0

Ψ̂nmp(t)Tn(r)Tm(z)eipθ for

{ −1 6 r, z 6 1

0 6 θ 6 2π

}
,

∂qΨNMK

∂rq
(ri, zj , θk, t) =

N∑
η=0

dr
(q)
iη ΨNMK(rη, zj , θk, t),

∂qΨNMK

∂zq
(ri, zj , θk, t) =

M∑
ξ=0

dz
(q)
jξ ΨNMK(ri, zξ, θk, t),

where dr(q)
ij and dz

(q)
ij correspond to the coefficients of the matrix of first and second

derivatives (q = 1, 2) and where θk = 2πk/K , k = 0, . . . , K − 1, are azimuthal points.
An expansion of these coefficients based on the sinus function is used to reduce the
round-off error. Tn and Tm are Chebyshev polynomials and Ψ̂nmp are the spectral
coefficients defined by

Ψ̂nmp(t) =
1

K

1

c′n

1

c′m

K−1∑
k=0

N∑
i=0

M∑
j=0

1

cic
′
j

Ψ (ri, zj , θk, t)Tn(ri)Tm(zj)e
−ipθk

with c0 = cN = c′0 = c′M = 2 and cn = c′m = 1 for n = 1, N − 1 and m = 1, M − 1.
The unknowns are required to be real Ψ (rn, zm, θk) in physical space. The physical
conditions are explicitly taken into account at the boundaries.

The main computational difficulties come from the presence of the singularity at
the axis (r̄ = 0) and the incompressibility constraint.

The first difficulty has been avoided with a variable transformation. The Fourier–
Galerkin approximation leads to a set of elliptic equations for each Fourier wave to
be solved in a two-dimensional domain depending on the two non-periodic directions.
To obtain the solution of these equations boundary conditions are required on r̄ = 0
and r̄ = 2/L (i.e. at the wall). At the wall, these conditions are given by the physical
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umax\|umin| vmax\|vmin| wmax\|wmin| σ

(a)
64× 96× 64 0.156448\0.0436474 1\0.0273277 0.0576058\0.137928 0.11512
96× 96× 64 0.156450\0.0436470 1\0.0273272 0.0576050\0.137920 0.11510
96× 122× 64 0.156451\0.0436471 1\0.0273273 0.0576050\0.137920 0.11511

(b)
64× 96× 64 0.156448\0.0436474 1\0.0273277 0.0576058\0.137928 0.1151215
64× 96× 80 0.156447\0.0436474 1\0.0273277 0.0576058\0.137925 0.1151215
64× 96× 128 0.156448\0.0436473 1\0.0273276 0.0576057\0.137925 0.1151212

Table 1. Mesh dependence of the solution characteristics in space and time at Re = 4500: (a) for
different numbers of Chebyshev polynomials in the meridianal plane (r, z) and (b) for different
numbers of Fourier modes in the azimuthal direction. σ is the major angular frequency (2πf).

problem and at the axis they are imposed by the uniqueness of the solution, except
for the first Fourier mode. Then, a change of dependent variables (Serre & Pulicani
2001) was used to enforce a boundary condition at the axis for this first Fourier
mode:

Ṽ = r̄V and p̃ = r̄p.

This variable change yields the conditions ũ = ṽ = w̃ = p̃ = 0 at r̄ = 0. By applying
the above variable changes, the Navier–Stokes equations transform to

∂Ṽ

∂t
+ A(Ṽ ) = −G(p̃) +

1

Re
L(Ṽ ),

D(Ṽ ) = 0.

The operators after the change of variables are given in the Appendix.
It is easy to obtain V and p from Ṽ and p̃ except at r̄ = 0, but the numerical

method does not require this value. Nevertheless, in order to graphically represent
the solution, different techniques for estimating the axis value are proposed in Serre
& Pulicani (2001).

The second difficulty, due to the velocity–pressure coupling, has been overcome by
the use of a projection scheme for time discretization. An improved version of the
second-order pseudospectral method used in Raspo (1996) has been adopted. The
improvement lies in the computation of the pressure predictor at each time step which
allows a possible variation of the normal pressure gradient at the boundaries during
the time integration. This version has been shown to reduce the slip velocity at the
boundary and to produce second-order accuracy in time for the pressure.

The time scheme is semi-implicit second-order accurate. It corresponds to a combi-
nation of the second-order Euler backward differentiation formula and the Adams–
Bashforth scheme for the nonlinear terms (Vanel, Peyret & Bontoux 1986).

4. Numerical details
The grid currently used is 64 × 96 in the (r, z)-plane with 64 Fourier modes in

the azimuthal direction. This grid is fine enough for the rotation considered and
corresponds to a compromise between the computational cost of the solution and the
high accuracy required in the thin boundary layers and in the narrow region close to
the axis. The time step incorporated is δt = 10−2.
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Re l/H s/H e/H

Escudier (1984) 1492 0.340 0.060 0.0410
Present results 1500 0.325 0.095 0.0547

Escudier (1984) 1854 0.210 (bubble 1) 0.160 0.113
0.520 (bubble 2) 0.070 0.019

Present results 1850 0.208 (bubble 1) 0.179 0.120
0.482 (bubble 2) 0.080 0.025

Table 2. Comparison of the characteristic lengths of the vortex breakdown with the experimental
data available in a cavity of aspect ratio L = 2. Stationary solutions.

The solutions are grid independent. Different refinements have been tested and the
time-dependent three-dimensional solution at Re = 4500 has been recomputed with
higher resolutions. The space and time scales of the solution, as the maxima of the
velocity components and the major frequency, respectively, differ by less than 0.1%
with the refinement in the grid spacing. Some results are summarized in tables 1 and
2. Additional results regarding the accuracy of the numerical method are given by
Serre & Pulicani (2001).

The three-dimensional nature of the solution is monitored through a time series of
discrete spectral energies in each Fourier mode k,

Ek =
1

N ×M
N∑
i=1

M∑
j=1

ûk(ri, zj)ûk
∗(ri, zj),

where ûk(ri, zj) is the value of the kth Fourier mode of the velocity at the collocation
points (ri, zj), and ûk

∗ is the complex conjugate of ûk .
The performance of the solver has been optimized with respect to vector-parallel

supercomputer, here a NEC SX5. The code was carried up to high-speed crest
performances as we obtained about 6 gigaflops and a reference CPU time less
as 10−6 second/mesh point/δt. These code capabilities made possible the efficient
computation of the high-resolution time-dependent solutions and allowed a sufficiently
large simulation time to be reached to make the results of physical relevance.

4.1. Verification of the numerical method

To test the efficiency of our numerical method in accurately describing these problems,
preliminary computations have been carried out for various well-documented test
cases.

First, the method has been completely validated for selected parameters (L, Re)
with respect to the previous experiments of Escudier (1984) (additional details about
these cases are given by Serre & Bontoux 2001). The number and the position of the
breakdown bubbles in stationary and oscillatory flows have been found to be in very
good agreement with the experiments. We summarize the results that fit closely with
the diagram map (figure 1): (i) the onset of the steady one-bubble vortex breakdown
arises in the basic flow at L = 2 at about Re = 1500 in agreement with data; (ii)
the two-bubble configuration is numerically determined between Re = 1800 and 2100
where a reverse transition is obtained; (iii) when further increasing Re from about
2600, the one-bubble configuration becomes unsteady up to Re = 3000 where a
second reverse transition occurs towards an unsteady flow without breakdown; (iv)
the two-bubble vortex breakdown is confirmed at intermediate L = 2.5 in the steady
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Figure 1. Comparison of flow states for some selected parameter combinations (L = H/R, Re) with
the results obtained by Escudier (1984). Regimes where computations have been carried out are
indicated by the black squares. The numbers in brackets give the number of bubbles numerically
obtained.

regime; (v) the three-bubble configuration which corresponds to a very narrow area in
the regime diagram from experiments, was also exactly determined at L = 3.3 at the
same Re = 2800 as in the experiments. Moreover, the characteristic lengths (defined
in figure 2) of the breakdown bubble in stationary flows inside a cavity L = 2 are
found to be consistent with the available experimental data of Escudier (1984) (see
table 2).

Secondly, we have considered the recent study of Marques & Lopez (2001) carried
out for lower Reynolds numbers and a lower aspect ratio (L = 3) than the present
one (L = 4). Both the bifurcations examined by Marques & Lopez (2001) have been
reproduced but for slightly higher Reynolds numbers. The first transition to unsteady
flow occurs via a Hopf bifurcation to a rotating wave k = 4 at Re = 2900 as in
the computations of Marques & Lopez (2001) at Re = 2730. The vortex breakdown
remains axisymmetric and the only departure from symmetry is in the meridian
plane (figure 3). The secondary bifurcation takes place on increasing the rotation to
Re = 3100, via a supercritical Naimark–Sacker bifurcation. A secondary frequency
appears associated with the asymmetric mode, k = 1, absent at Re = 2900 and
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e

s l

Figure 2. Sketch of the vortex breakdown bubble. Geometrical definition of the characteristic
lengths of the vortex breakdown.

(a) (b)

Figure 3. Flow solution at Re = 2900, L = 3. Iso-surface of axial velocity w = 0 showing an
axisymmetric vortex breakdown with two bubbles, and iso-contours of axial velocity, w, in different
selected (r, θ)- and (r, z)-planes, emphasizing the departure from symmetry only in the external flow
of the vortex breakdown to a rotating wave k = 4. (a) z∗ = 3H/4, z∗ = H/8 and z∗ = H/10,
(r, θ)-planes; (b) θ = 0, (r, z)-plane.

corresponding to the precession of the vortex breakdown. The spatial structure of this
three-dimensional solution is similar to that computed by Marques & Lopez (2001)
(figure 4). The Reynolds number Re = 3100, higher than the Reynolds number given
by Marques & Lopez (2001), Re = 2900, is nevertheless closer to the one at which
Escudier (1984) observed this precessing motion, Re & 3000.

The complexity of the phenomena and of the dynamical processes that are simulated
in this section, are considered to establish the quality and the accuracy of the solution
solver and as a complete verification of the numerical method.

5. Results
The results presented in this section have all been obtained in a configuration of

fixed aspect ratio L = 4.
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(a) (b)

Figure 4. Flow solution at Re = 3100, L = 3. (a) Iso-surface of axial velocity w = 0 showing a
three-dimensional vortex breakdown with two bubbles, and iso-contours of the axial velocity, w,
in the meridianal plane θ = 0. (b) Iso-contours of w in the z∗ = H/5 (r, θ)-plane emphasizing the
departure from symmetry of both the external flow (to a rotating wave k = 4) and the vortex
breakdown structure.

5.1. Basic state

Starting from an initial state at rest, the top endwall starts rotating instantaneously
at Re = 2500. After a short transient time, all non-axisymmetric modes decayed until
their energies Ek , k 6= 0, reached machine zero level. The resulting steady solution is
axisymmetric without vortex breakdown and is considered to be the basic flow. The
axisymmetry of this steady state is in good agreement with experiments of Escudier
(1984) and the recent three-dimensional computations of Blackburn & Lopez (2000)
and Marques & Lopez (2001).

Three-dimensional modes of the sidewall layer of a steady flow have been observed
in experiments by Spohn et al. (1998) and in computations by Sotiroupolos &
Ventikos (2001). Nevertheless, there are no contradictions with the present results,
because these authors showed that these modes are forced either by the structure of
their numerical grid or by the unavoidable non-axisymmetric disturbances arising,
among others, from geometrical, thermal and dynamical experimental imperfections.
Sotiroupolos & Ventikos (2001) only obtain the k = 4 spiral sidewall separation at
Re = 1850, L = 1.75, when they use the Cartesian grid mapped onto the circle which
has four singular points at the cylinder wall. Indeed, using a polar grid the steady
state is axisymmetric for the same set of (Re, L). This is consistent with the linear
stability analysis for the three-dimensional perturbations of Gelfgat et al. (2001) which
show, for the parameter range considered by Sotiropoulos & Ventikos (2001), that the
steady flow is axisymmetric. In the present work, the use of collocation points in both
(r, z) directions and equidistant points in the azimuthal direction is disturbance-free.
Moreover, the numerical noise brought about by the spectral method is negligible.

Thus, the basic state at Re = 2500 is steady and axisymmetric but its structure is
nevertheless non-trivial. As in the case of an infinite disk (see Greenspan 1969), when
the upper disk is impulsively started, a thin Ekman boundary layer is formed which
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Figure 5. Time history of the axisymmetric mode (k = 0) of the spectral energy E0 at Re = 3500.
Periodic regime of frequency σ = 0.105.

acts as a pump (known as Ekman pumping) drawing in fluid axially and driving it
away in centrifugal spirals. In a closed container, this fluid swirls along the stationary
vertical wall to the stationary disk. Then, the fluid spirals inward in the Bödewadt
layer and again turns in the axial direction towards the rotating disk. The flow inside
the cylinder is thus driven and mainly determined by the axial component of the
velocity and by the swirl component depending on the rotation speed of the disk, Ω.

Based on the above description, it is obvious that the transition of the global
flow depends on the transition process inside each of the various three-dimensional
boundary layers. The parameters governing the transition and the description of
the instabilities in both Bödewadt and Ekman layers have also been previously
investigated numerically in closed rotor–stator cavities (L < 1) by Serre et al. (2001a)
and also in the case of an open rotating cavity with a radial throughflow by Serre et
al. (2001b). There is no analytical description of the vertical sidewall layer because
the stationarity of the cylinder leads to a too complex system of equations. Indeed,
contrary to the rotating cylinder case (Stewartson layer) where the equilibrium between
the viscous and the Coriolis forces completely determines the boundary layer, the
Coriolis force suddenly vanishes at the wall in the present situation. Then, inertial
nonlinear terms arise in the equilibrium of the viscous forces (see a review in Tomlan
& Hudson 1971). Nevertheless, as is usual in the literature, we retain the term
‘Stewartson layer’ to denote the vertical layer in this work.

5.2. Onset of unsteadiness

Starting from Re = 2500, the solution at Re = 3400 remains steady without vortex
breakdown. The first bifurcation to a time-periodic solution branch of frequency
σ = 0.105 (where σ = 2πfΩ−1, the rotation frequency being unity) is obtained at
Re = 3500. The amplitude of this solution is weak (≈ 10−5) (figure 5) which suggests
the closeness of the threshold. Nevertheless, due to prohibitive three-dimensional
computational costs, the bifurcation point has not been resolved more precisely than
within the Re range [3400, 3500].

The transition probably occurs through a supercritical Hopf bifurcation as shown



358 E. Serre and P. Bontoux

by the results of the linear stability analysis of Gelfgat et al. (1996) for cavities of
aspect ratio, 1 6 L 6 3.5 and, as suggested by the general behaviour of the flow
response in the vicinity of the critical Reynolds number, the time-dependence is
oscillatory with the amplitude decaying exponentially below the transition and there
is no hysteresis cycle. This first bifurcation at Re = 3500 is axisymmetric over a large
computational time of about 8500 (this is much larger than νt∗/R2 = 1.5, generally
accepted to reach an asymptotic state following the calculations of Tsiltverblit 1993
for an axisymmetric cylinder). The time evolution of the spectral energy Ek (for k 6= 0)
shows that its amplitude remains close to the round-off error level of the computer.
Moreover, this axisymmetric solution is stable with respect to a range of asymmetric
disturbances of different wavelengths that were considered.

The flow undergoes breakdown with two axisymmetric recirculation bubbles of
small size, separated by a rather large distance (figure 6a); the velocity vectors are
also displayed at one given time instant. These recirculation bubbles are probably
created when the steady flow becomes periodic because no bubble has been apparent
in the steady regime at Re = 3400. Moreover, recirculation bubbles appearing after
the onset of oscillatory instability were already reported in Gelfgat et al. (1996) for
small aspect ratios. Nevertheless, more computations would be required close to the
bifurcation to completely elucidate this point. Since the presence of a stagnation point
in the central region of the flow has usually been defined as a positive identification of
the breakdown zone, the surface w = 0 is considered when displaying the phenomenon.
These bubbles are steady notwithstanding the oscillatory temporal evolution of the
flow. Similar observations have been made in the experiments of Pereira & Sousa
(1999) at Re = 2700 in a cylinder of aspect ratio L = 3 with a rotating cone. This
shows that the time-dependent behaviour of the flow is not caused by the breakdown
phenomenon and is not connected with it. In order to emphasize the oscillatory mode
of instability responsible for the periodic behaviour, the time-dependent velocity
fluctuations are computed at given instants with respect to the average flow solution.
The vector field of the velocity fluctuation shows three pairs of counter-rotating rolls,
of the same scale as the boundary layer thickness (figure 6b). The characteristics of
these vortices and their location (they occur at the axial position z = 3H/4) suggest
that their origin is related to the centrifugal instability, giving rise to the formation of
vortex rings in the vertical sidewall boundary layer. Indeed, these structures emanate
from a flow region where the centrifugal effects are the largest. These observations are
in agreement with different previous theoretical, experimental and numerical studies
(Tsitverblit & Kit 1998; Escudier & Zenhder 1982; Pereira & Sousa 1999; Lopez,
Marques & Sanchez 2001). Moreover, similar vortex rings related to the centrifugal
instability were observed within a fraction of a second during an impulsive spin-down
across the vertical layer of a rotor–stator cylinder (L = 3.86) by Weidman (1976).
These rolls travel in the downstream direction, following the main inflow of the
Bödewadt layer of the stationary disk and join together at the axis. Further, they are
convected along the axis in the form of conical structures.

For L = 4 no data are available for comparison. Nevertheless, the characteristics
of the solution are consistent with the available data for slightly smaller aspect
ratios (L 6 3.5). Although it is well known that the frequency of the solution
varies considerably with the aspect ratio (see Stevens et al. 1999 for experiments
and computations of these multiple states and their frequencies), we can see that
the frequency of our solution is of the same order as that obtained in the recent
computations of Blackburn & Lopez (2000) (σ = 0.115 for L = 2.5), and in the
theoretical axisymmetric results of Gelfgat et al. (1996), σ = 0.13 for L = 3.5. The
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(a) (b)

Figure 6. Axisymmetric time-periodic solution (σ = 0.105) at Re = 3500, L = 4. (a) Iso-surface of
axial velocity, w = 0, showing two stationary bubbles. Velocity field in the meridianal (r, z)-plane and
iso-lines of the radial component of the velocity u emphasizing the axisymmetry of the flow close
to the disks. (b) The velocity fluctuation field in the vertical sidewall layer showing four successive
counter-rotating rolls superposed on the downstream flow and characteristic of the centrifugal
instability.

Reynolds number of the transition, Re = 3500, is very close to the value obtained
by extrapolating the data from the theoretical analysis of Gelfgat et al. (1996) (see
figure 12a of their paper) but is larger than the value experimentally determined by
Escudier (1984), Re = 3000, in cavities of aspect ratio in the range of 3 6 L 6 3.5.
This discrepancy can be only explained by asymmetric effects which are not observed
here, because when the flows are axisymmetric, preliminary results in cavities of
aspect ratio L < 3 are entirely consistent with the observations of Escudier (1984)
(see figure 1 in § 4.1).

This axisymmetric bifurcation is observed here for the first time in a cavity of
large aspect ratio, L = 4, with reduced axial confinement effect. Indeed, Escudier’s
experimental observations (3 6 L 6 3.5) suggest that the basic state loses stability
to a non-axisymmetric flow characterized by a precession motion of the breakdown;
also, this precessing motion has been recently associated with an instability mode of
wavenumber k = 1 by Marques & Lopez (2001). In contrast to the experimental work
of Escudier, computations of these last authors show a supercritical Hopf bifurcation
at Re = 2730 in a cavity of aspect ratio L = 3 but associated with a rotating wave
with azimuthal wavenumber k = 4.

5.3. Subsequent bifurcations and three-dimensional flows

5.3.1. Three-dimensional flow associated with a rotating wave, k = 5

As the flow spins up at Re = 4000, starting from Re = 3500, a secondary bifurcation
takes place to a rotating wave of azimuthal wavelength k = 5. The solution is time-
dependent with two fundamental frequencies, σ1 = 0.108, and a smaller one, σ2 = 0.08.
The three-dimensional mode of the centrifugal instability is clearly visible in the lower
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(a) (b)

Figure 7. Azimuthal rotating wave of wavelength k = 5 at Re = 4000, L = 4. (a) Iso-surface of
the radial velocity, u, showing the occurrence of spiral arms related to the centrifugal instability of
the vertical boundary layer. (b) Iso-surfaces of the radial and axial components of the velocity in
order to display the helical structures at the periphery and the axisymmetric vortex breakdown on
the axis, respectively. The main flow direction in the meridianal plane is indicated by the velocity
field at one given time instant.

part of the vertical Stewartson layer. Figure 7(a) shows an isosurface of the radial
component of the velocity which illustrates the spatial structure of the azimuthal
wave in the Stewartson layer: rolls convected in spirals by the main flow occur at
about z = H/4. These structures travel downstream to the stationary disk layer and
reach the core region where they combine into a helical vortex pattern (figure 7b).
The velocity vectors are also displayed at one specific time instant showing the main
flow direction.

At this rotation speed, the vortex breakdown is composed of two recirculation
bubbles as at Re = 3500 but of much larger size. These bubbles remain axisymmetric
and are not affected by the structures related to the centrifugal instability. The plots
at different short time instants show that the bubbles are steady. We can conclude
that the unsteadiness of the solution is only related to the travelling motion of the
centrifugal instability rolls. The largest frequency σ1 = 0.108 remains close to that
obtained at Re = 3500 (σ = 0.105) showing that the frequency of the temporally
periodic axisymmetric state survives the bifurcation and that the k = 0 axisymmetric
mode underlies the three-dimensional solution. Indeed, this frequency is related to
the motion of the structures in the meridian plane, which means that the axial
component of the phase velocity is very close to that of the k = 0 mode at Re = 3500.
The occurrence of the frequency σ2 corresponds to the precessing motion in the
azimuthal direction of the k = 5 non-axisymmetric mode. The iso-lines of axial
velocity displayed in figure 8 show the entire route of these structures. The presence
of the vortices over the large height of the core region between the vortex breakdown
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Figure 8. Axisymmetric vortex breakdown at Re = 4000, L = 4. Iso-lines of the axial component
of the velocity in different selected (r, θ)-planes (z = H/16, H/4, H/2, 3H/4, 3H/2) showing the
entire route of the vortices related to the k = 5 mode of the centrifugal instability and the feedback
role played by the core region.

zone and the vertical boundary layer supports the idea of a positive feedback effect
played by this flow region during the transition process. Tsitverblit & Kit (1998) have
already demonstrated this effect of feedback when determining the critical Reynolds
number of the transition, performing a linear stability analysis on different parts of
the flow domain considered independently. This regime is noticeably similar to the one
observed by Blackburn & Lopez (2000) in a cavity of smaller aspect ratio (L = 2.5)
and for Re = 3500. There, a rotating wave (k = 5) occurs in the vertical boundary
layer, from a time-periodic axisymmetric state and exhibits a spatial structure similar
to the present one. Nevertheless, these authors did not show any evidence of vortex
breakdown at these values of the parameters (L, Re).

5.3.2. Precessing S-shape vortex breakdown

Some asymmetries of the breakdown structure appear at Re = 4500 in the form of
an ‘S-shape’ first noted by Escudier (1984) and which we use here to describe the first
step of the vortex breakdown shift from the bubble to the spiral type. This is associated
with a precessing motion of the two bubbles about the axis in the same direction
as the main flow (figure 9a). This precession is observed after a long computational
time (Ωt = 1800) corresponding to the saturation of the three-dimensional non-zero
modes and to the occurrence of a k = 1 mode.

The solution branch switches from the rotating wave k = 5 at Re = 4000 to
rotating wave k = 8. The solution is time-dependent with a fundamental angular
frequency, σ = 0.115, still close to the value observed at Re = 3500 as already
noted above in § 5.1. At this rotation speed, this solution is nevertheless unstable:
the mode k = 8 grows first at about Ωt = 1500 but a second k = 1 mode occurs at
Ωt = 1800. This mode grows very fast and reaches an amplitude four times greater
than the k = 8 mode (figure 10). Both modes remain dominant (see for example in
figure 10 the k = 10 mode of amplitude one order weaker than the k = 8 mode) over
the computational time Ωt = 5300, extracting energy from the axisymmetric mode
(figure 10). The occurrence of these two dominant modes brings about significant
modifications to the temporal behaviour of the solution and reveals the growth of
new frequencies.
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(a) (b)

Figure 9. Three-dimensional solution at Re = 4500, L = 4. (a) Iso-surface w = 0 and iso-lines of
the axial component of the velocity showing a precessing S-shape asymmetric vortex breakdown.
(b) Azimuthal rotating wave associated with the k = 8 mode of the centrifugal instability. Iso-surface
of the azimuthal component of the vorticity.

During the transient (1500 6 Ωt < 1800), the breakdown zone remains axisymmet-
ric: the eight spiral arms in the Stewartson layer and the helical vortices located in
the core region are the only departure from axisymmetry (figure 9b) showing that the
k = 8 mode can be related to the instability of the sidewall layer. At Ωt = 1800, cor-
responding to the saturation of the k = 1 mode, the upper structure of the breakdown
rapidly mutates into an S-shape (figure 9a) and the two breakdowns simultaneously
start to gyrate around the axis. The two breakdowns coexist during the whole oscil-
lation process and the computations at different time steps show that their locations
remain quite stationary in the axial direction. The asymmetry of the flow is now
clearly visible in the meridian plane (figure 9a).

This result is consistent with the experimental observations of Escudier (1984) who
noticed ‘the precession of the lower breakdown structure’ in oscillatory flows inside
cavities of L > 3.1 (we recall that the ‘lower structure’ in the experiments of Escudier
here corresponds to the upper structure because the rotor is in our geometry the top
disk). This topology of the breakdown is also quite similar to that found by Pereira
& Sousa (1999) at Re = 3100 inside a cavity in which the rotating top disk is a cone.

5.3.3. Precessing ‘spiral-type’ vortex breakdown

The rotation is instantaneously increased from Re = 5500. After Ωt = 1400, the
three modes k = 1, k = 8 and k = 10 now become dominant, exhibiting the strong
nonlinear effect of the solution.
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Figure 10. Time evolution of the spectral energy Ek (see § 4) at Re = 4500. (a) axisymmetric mode
of instability k = 0, (b) antisymmetric k = 1 mode, (c) three-dimensional k = 8 and k = 10 modes,
respectively.

The dynamics of the vortex breakdown is illustrated at discrete time steps in
figure 11 simultaneously with the fluctuations of the azimuthal component of the
velocity in a meridian (r, z)-plane. The breakdown zone is composed of one structure
only that gyrates around the central axis in counter-clockwise sense similarly to the
main flow (figure 11). The rotation frequency of the breakdown is quite regular and
equal to about twice the base frequency (σ = 0.11) related to the sidewall layer
instability. Its topology is more complex than at Re = 4500 and confirms that an
evolution occurs from the S-shape defined by Escudier (1984) to a vortex breakdown
closer to the spiral-type. Leibovich (1978), visualizing the vortex axis with a dye
filament, characterized this type as follows: ‘the spiral form is marked by a kink in
the filament, followed by a corkscrew-shaped twisting of the dye’. It is clear from
figure 11 that the spiral form occurs in the upper part of the breakdown. Moreover,
the regularity of the precessing motion (nearly periodic) and the sense of the spiral,
winding in the direction opposite to the base flow, are in good agreement with the
observations of Brücker (1993).

The k = 1, k = 8 and k = 10 modes now have the same amplitude of about
one thousandth that of k = 0. The spatial structures are shown for each of them,
separately (figure 12). The entire flow region becomes three-dimensional except the
upper half of the Stewartson layer dominated by the k = 0 mode. The k = 8 mode is
concentrated in the lower half of the cavity, mainly inside the vertical boundary layer,
showing that this mode is related to the centrifugal instability of the swirling jet above
the cylinder wall. In contrast, both k = 1 and k = 8 modes are more concentrated
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Figure 11. Precessing spiral-type vortex breakdown (iso-surface w = 0) at Re = 5500 at nine
different time instants for Ωt ∈ [5500, 5608]. The time step between each picture is Ωt = 12.
Iso-lines of the fluctuations of the azimuthal component of the velocity, v, showing the travelling
counter-rotating rolls related to the three-dimensional mode of the vertical sidewall layer instability.

close to the stationary disc. The maximum of the k = 1 mode is located closer to
the axis where the inflows of the Bödewadt layers on the right and on the left of
the axis collide with each other. It is also of interest to note the extension of this
mode both in the cavity region close to the axis, which corresponds to the breakdown
zone, and also much higher in the cavity where the upward stream is pumped by the
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(a) (b) (c) (d)

Figure 12. Iso-lines of the spectral energies in the (r, z)-planes showing the localization of the
three-dimensional effects: (a) axisymmetric k = 0 mode, [0; 10−2]; (b) k = 1, [0; 9× 10−5]; (c) k = 8,
[0; 9× 10−5]; (d ) k = 10, [0; 9× 10−5]. The values in the brackets indicate the respective magnitude
of the variation of the different energy modes, E0, E1, E8, E10, respectively.

rotating top disc. This observation suggests that this k = 1 mode is responsible for the
precessing motion of the breakdown. Its origin certainly requires further investigation
but does not correspond to a Bödewadt instability. Indeed, at this rotation speed the
flow region of the Bödewadt layer located at this distance from the axis is stable (see
Serre et al. 2001a). The spatial extension of the k = 0, 1, 8 modes in the meridian
plane is qualitatively similar to the case of Marques & Lopez (2001) in a cylinder of
aspect ratio L = 3 at Re = 2900.

The maximum rotation speed considered in this paper was reached at Re = 10 000.
The temporal behaviour is now chaotic with several frequencies, indicating that more
than three modes are dominant. The interaction among the various flow structures is
then significantly much more complex. Nevertheless, it is clear from figure 13(a) that
the breakdown is now close to the spiral-type defined by Leibovich (1978), particularly
the upper part of the structure (corresponding to a ‘stagnation surface w = 0’) that
is located completely outside the axis. The motion of these structures is also more
complicated than at Re = 5500, because the precessing motion is doubled by an
oscillatory motion (in translation) in the axial direction.

A zone of flow separation is observed in the upper part of the vertical sidewall
layer, with the occurrence of a second series of eight spiral arms close to the rotating
disc (figure 13b). This separation zone has already been observed in experiments by
Spohn et al. (1998) in a cavity of aspect ratio L = 2. As in their experiments, the
position of this zone remains remarkably stable at about z = 2H/3, throughout the
computation. These spiral arms roll up in the same direction as those located closer to
the stationary disc but they form a noticeably smaller angle (about 45◦) with respect
to the axial direction, emphasizing an important change in the wavelength. Weidman
(1976) also observed changes in the wavelength of the centrifugal instability patterns
during a quite slow spin-down. However, in contrast to the present computations and
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Figure 13. Three-dimensional flow at Re = 10 000, L = 4. (a) Spiral-type vortex breakdown.
Iso-surface of the axial velocity, w = 0. (b) Spiral structures of the instability of the vertical sidewall
layer. Iso-surface of positive radial velocity (u = 2 × 10−3). (c, d) Axial profiles of the azimuthal
velocity, v, and the axial velocity, w, near the vertical sidewall, respectively.

to the observations of Spohn et al. (1998), Weidman’s experiments did not show a
zone of flow separation because the angle of the spiral bands increased continuously
all along the sidewall layer: the maximum helical angles of 70◦ to 75◦ were observed,
much larger than the value obtained here.

This change in wavelength is due to a modification in the dynamics of the vortex
flow that is apparent in the axial profiles of the main components of the velocity,
v and w, inside the Stewartson layer (figures 13c and 13d ). The upper part of the
Stewartson layer corresponds to a flow region where both components of the velocity
strongly decrease while the flow separates. In this flow region, the layer is similar to a
strong-intensity thin jet developing along a concave stationary wall. Further, after the
separation the velocity components are nearly independent of the axial coordinate
z; the intensity of the jet is weaker and the thickness increases bringing about the
change in the wavelength.

It seems clear that these structures are also related to the centrifugal instability
because at this Reynolds number the Ekman layer of the rotating disc is stable
(Serre et al. 2001b). Nevertheless, we cannot definitively explain their occurrence
at this location and at this high rotation speed. Indeed, at a lower rotation speed
(Re = 5500), no structure has been observed in the main flow although the boundary
layer profile (profile of w) already satisfies the so-called ‘point-of-inflection criterion’
(that a velocity profile which possesses a point of inflection is unstable) at this axial
location. Then, as already noted above, a possible explanation can be given using the
feedback role played by the central region. Indeed, contrary to the case at Re = 5500,
the Ekman pumping is strong enough at Re = 10 000: the three-dimensional structures
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that travel upward in the central region are observed in the proximity of the rotating
disc layer and are further transported to the upper part of the Stewartson layer. The
central flow can then intensively transfer the disturbance from the location where
the instability originates to the top of the cavity. As the profile is already unstable,
the disturbance thus introduced brings about the growth of an instability mode
characterized by spiral arms which are not observed at lower rotation speeds and are
related to the centrifugal instability.

6. Conclusion
Fully nonlinear three-dimensional computations have been performed in a rotor–

stator cylinder of large aspect ratio L = 4. The flow driven by the top rotating
disc is studied for the first time for this value of L. The present study provides
a new independent set of three-dimensional Navier–Stokes computations that are
very helpful in the understanding of the transition from the steady axisymmetric
flow to complex three-dimensional flow in this problem with well-defined boundaries.
The transition to an axisymmetric periodic flow introduces a new bifurcation in the
transition process for this flow in cavities of large aspect ratio L > 3. Moreover, the
topology and the dynamics of asymmetric vortex breakdown have been detailed for
the first time in this configuration.

The spectral numerical method associated with a thin grid mesh and coupled
with a very efficient direct solver of the Navier–Stokes equations ensures high-order
accuracy of the solutions. A relevant measure of this accuracy is the value of the
velocity field divergence in order to check the incompressibility constraint (Serre &
Pulicani 2001). In all the cases, this value is less than 10−11 within the domain and
10−5 at the boundaries. Thus, these very accurate numerical results would constitute
a benchmark reference for other results obtained in the same configuration.

Our results show that the transition to a periodic regime at Re = 3500 occurs
through an axisymmetric Hopf bifurcation. This axisymmetric bifurcation is observed
here for the first time in a cavity of large aspect ratio. The transition process is
brought about by an axisymmetric mode of instability originating from the vertical
sidewall layer. This instability mode is related to the centrifugal instability and
travelling counter-rotating vortices are observed in the Stewartson layer. The form
of the perturbations and their location are reminiscent of Taylor–Görtler vortices
with a superimposed vertical motion (travelling Taylor–Görtler vortices). The vortex
breakdown is composed of two steady bubbles of small size, suggesting that they are
not connected to the time-dependent behaviour of the flow.

For Reynolds number up to 3500, successive stable time-dependent flows are
observed and different three-dimensional modes of instability are apparent. These
modes are associated with the centrifugal instability (except the k = 1 mode which
is associated with a jet-like instability) and characterized by spiral arms evolving in
helical structures in the central region of the flow. For Re = 4000, a rotating wave
of azimuthal wavelength k = 5 occurs. This branch is created as a secondary Hopf
bifurcation from the first axisymmetric temporally periodic solution at Re = 3500.
As shown in Blackburn & Lopez (2000) and in Marques & Lopez (2001) in cylinders
of aspect ratios L = 2.5 and L = 3, respectively, this secondary bifurcation is a
Naimark–Sacker bifurcation, i.e. a Hopf bifurcation from a time-periodic state. The
vortex breakdown remains axisymmetric up to Re = 4500, for which a precessing
motion about the axis of the vortex breakdown structure is obtained. This motion,
originally observed by Escudier, is not related to an instability of the steady basic
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state but corresponds to the growth of the k = 1 mode from the unstable k = 8 wave
state. The spatial localization of the maximum intensity of this particular k = 1 mode
when the jet rebounds from its collision at the axis on the stationary disc suggests
that it originates from a jet instability. Nevertheless, in confined flows the location
of the maximal disturbance may not coincide with the location of the origin of the
instability. This point requires further investigation.

At Re = 10 000, corresponding to the highest rotation speed considered in this
work, the temporal behaviour of the flow is chaotic with several frequencies. A
separation zone in the Stewartson layer of the vertical stationary cylinder is also
observed, characterized by the occurrence of a second series of spiral arms with a
different wavelength, located in a flow region closer to the rotating disc layer. A
possible explanation of the origin of these structures is given, related to a feedback
role played by the central region of the cylinder. At this rotation speed, the Ekman
pumping is strong enough to transfer the structures of the instability from the bottom
to the top of the cavity. These numerical simulations have also revealed the dynamics
of the vortex breakdown in a cylindrical container. As the rotation speed increases,
the vortex breakdown switches from a bubble to a spiral type at Re = 10 000, i.e.
from an axisymmetric to a three-dimensional structure. For all the Reynolds numbers
considered, the spiral type (also called ‘S-shape’ in the first stage of the transition)
has a precessing motion about the axis.

The computations were carried out on Nec SX5 supercomputer of IDRIS/CNRS
(Orsay). The authors are grateful to Professors R. Peyret (CNRS/University of Nice),
P. Le Quéré (CNRS/LIMSI Paris) and O. Daube (University of Evry, Paris) for
fruitful discussions. We also wish to thank B. Launder (UMIST, Manchester) for
his kind help in the writing of this work. The research was partly supported by
the Réseau MFN (CNRS-DFG). A support for E. S. during the last stages of the
submission by a C.N.E.S. postdoctorate grant is also acknowledged.

Appendix
Derivative operators after the variable change given in § 3 are as follows:
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For the pressure:
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